的能量,会对靶材形成多大破坏,这些都是可以进行推测的。
毕竟在载能中子与靶原子相互作用的过程中,中子首先要与一个晶格原子发生相互作用(即碰撞),然后载能中子才能将能量传递给这个晶格原子,产生一个KPA碰撞原子。
而这个KPA碰撞原子,是否会继续离开原子核、去碰撞下一个原子、传递的能量会损失多少,这些都是有原始记录,可以继续推测的。
只不过这种模拟方式本身就是唯像的,模拟出来的数据多多少少是有‘一点点’不那么靠谱的。
参考他之前针对等离子体湍流建立的唯像数学模型,第一次的实验仅仅勉强做到了45分钟的控制而已。
而在后面获取到准确的实验数据后,针对性的调整优化后,运行时间就推到两小时以上。
从这就可见唯像模型到底有多么的不靠谱了。
但在中子辐照实验方面,也没有其他的办法了。
虽然模拟得到的结果并不一定靠谱。但至少,先利用唯像模型排除一部分的材料,再来做具体的实验总比直接上要好得多。
毕竟抗中子辐照性能检测实验实在太珍贵太难做了,特别是高能级的中子辐照实验,更是难上加难。
将手中的材料数据整合了一下后,徐川将其输入到了计算机中。
材料虽然是新研发出来的,但碳、碳化硅、氧化铪这些元素在中子辐照实验中都是常规物质。
唯一的不稳定点就在于那种独特排序的碳纳米管·铪晶体结构了,这种材料在以往没有相关的经验数据,徐川只能根据资料上的常规辐照测试数据来做一个推测。
思虑了一下,徐川从抽屉中抽出了一叠A4纸。
手中的黑色签字笔停留在避免上,思索了一会后,他才动手。
“在不考虑晶体效应和原子间的作用势,依照经典力学计算。设:入射中子质量M1,能量Eo;静止的靶原子质量M2”
“则DPA计算公式可表达为DPA=(∫σpx(E)(E)ΦE)t(6),而obx(E)为能量为E的入射粒子的离位横截面,t为辐照时间.”
“导出:σpx(E)=2∑i∫Tmax、Td·vd(T).dσd(T,E)/dT·DT”
“Vd(T)=(0.8/2Td)·Tdam”
一行行的公式在徐川手中写出,如果是利用Lindhard-Robinson模型来对中子辐照条件下的DPA进行一个计算的话,他弄个模型往里面输入数据就够了。
然而独特排序的碳纳米管·铪晶体需要他重新将一些关于材料方面的变量考虑进入,尤其是铪对于中子吸收率的速度,更是需要重点计算的东西。
与其去修改Lindhard-Robinson模型重新弄一个,还不如他直接上笔计算。
反正,这并不是什么难事。
至少,对他而言是的。
对他来说,能用数学解决的麻烦,都不是麻烦。
也不知道过去了多久的时间,当徐川放下手中的黑色签字笔时,一张专门用于罗列计算结果数据的稿纸上,有着一行行的函数。
【PWR·DPA,dpa/s=2.718E-08】
【HTTR·DPA,dpa/s=2.602E-09】
【HTTR·He】
拾起桌上的稿纸,看着上面的结果,徐川长舒了口气,忍不住摇了摇头。
从模拟的计算结果来看,很显然,这种新材料,在面对模拟中子辐照的数值计算时,表现出来的性能并不算优秀。
甚至,还比不上奥氏钢。
至于关键,应该就在于添加剂氧化铪身上了。
毕竟对于一种抗中子辐照材料而言,其实并不是所有的入射粒子能量传递给被击原子都导致材料的辐照损伤的。
中子的能量传递给原子内部,造成电离和电子